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ABSTRACT

We consider, in the framework of general relativity, large masses consisting of identical baryons
(whose mass is taken to be that of the neutron). Four assumptions are made as to their interactions,
leading to four equations of state, and for each the masses and radii of a number of configurations are
calculated for various values of the central number density. The relations of the mass to a parameter
(=4 sinh™! [ /mpc(37w2n,)Y3], where n, is the central number density) for each of the four equations of
state are strikingly similar.

I. INTRODUCTION

Several discussions have been given (e.g., Oppenheimer and Volkoff 1939; Cameron
1959; Ambartsumyan and Saakyan 1960, 1961; Saakyan 1963) of the problem of the
structure of stellar masses composed of elementary particles at ultra-high densities
(> nuclear density). Such stars are called neutron stars (and are sometimes called
hyperon stars). It seems at least possible that such stars exist in nature, presumably as
the relics of supernovae. Recent X-ray experiments carried out by means of sounding
rockets (Gursky, Giacconi, Paolini, and Rossi 1963; Bowyer, Byram, Chubb, and Fried-
man 1964) indicate that such stars might even exist.

In this connection it seemed worthwhile to consider whether certain simple alterna-~
tives for the equation of state of the particles could be justified on theoretical grounds,
and, if so, whether the results would have any similarity to those for a perfect Fermi gas
with no interaction.

The first alternative is (potential energy density) ~ (number density)®/s, This origi-
nated in a hypothesis of Zel’dovich (1959) of a common fermion core “inside’ all baryons,
which then leads to a strong repulsion (potential « 1/72) when the separation is small
and the relative angular momentum is zero. The second was (potential energy density) ~
(number density)?. This originated in a theory of Zel’dovich (1961) in which baryons
interact via a vector meson with a mass.

II. THE EQUATIONS OF HYDROSTATIC EQUILIBRIUM
It has been shown that the relativistic equations of hydrostatic equilibrium are

aM, 1

a7 e @
aP _ _G(e/c*+P/c®)(M,+4nr*P/ 02) @
dr r(r—2GM,/ c?)

Here M, is a variable that at the boundary takes on the value of the mass as seen by a
distant observer; P the pressure; e the (proper) energy density, including the rest energy;
¢ the velocity of light; G Newton’s constant of gravitation; and r the radial Schwarzschild
coordinate. The equation of state is determined from the microscopic properties of the
medium. In the non-relativistic limit e — pc® and P < pc?, r > GM/c?, then equations
(1) and (2) reduce to the familiar non-relativistic equations of hydrostatic equilibrium.
We now introduce the units (from Oppenheimer and Volkoff 1939)

1 mpc 2
87 (h/mpc)?’
* Work supported in part by the National Science Foundation.
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c=G= (3)
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In these units the unit of mass is 9.29 Mo, the unit of length is 13.69 km, and the unit of
energy density is 3 X (rest energy of a baryon)/(volume of a sphere of radius equal to
Compton wavelength of baryon). We take mz as the neutron mass throughout. Equa-
tions (1) and (2) become then the equations of Oppenheimer and Volkoff (1939):

du_, ., d_ _, (IP\" Pt 3
dr_47rer ! dr dmr dt 1—2u/r (PAu/(4mri)], @

with initial conditions
u=0, t=1, at r=0, (5)

corresponding to M, = 0, P = P, in the non-relativistic case. Solutions with # < 0 at
the center cannot occur (see Oppenheimer and Volkoff 1939). Here r is the radial
Schwarzschild coordinate; # a parameter which at the boundary takes on the value of the
observable mass; and ¢ is related to the (proper) particle density by

n= (3x2)"Y(kh/mpc)—3sinh®(t/4). ©)

The representation of # was first used in stellar calculations by Chandrasekhar; 7z is
the rest mass of one of the (identical) fermions' composing the star; e and P are energy
density and pressure, known functions? of {. We write

E=€T+€v; P=PT+P1;) &

where 7 is the kinetic energy density including rest energy density and e, the potential
energy density, and similarly for P.
The units are those of Oppenheimer and Volkoff (1939).

III. EQUATIONS OF STATE
In all cases

eT=—1—(sinht—t), (®
47

P _ L (s hi— 8si hi+3t> 9)

r =757 \sin sinh - .

The expressions for er and Pr are the same as those given by Landau and Liishitz
(1958) as one sees from equation (2). They are not those given by Chandrasekhar (1957),
since the rest-energy density is included, as it must be; at nuclear densities omission of it
would make the parametric form of the equation of state inaccurate (cf. Saakyan 1964).?

a) Oppenheimer and Volkoff (1939) give

&=P,=0. (10)
This is simply the case of neutrons without interactions.
b) Cameron (1959), as modified by Saakyan (1963), gives
~L (23 9 sinh?® L 10.1 sinhS i)
“= g\ g e
(1n
P ———1—<39 9 si hgi— 10.1 sinh61>
P g \7T T ST 1)
1 We take the mass of the (identical) fermions as being equal to the neutron mass mz.

2 These known functions taken together constitute the equation of state.
3 The non-relativistic limit, as one sees by expanding each expression in powers of ¢, is

PT=3(eT—ch2n).
3
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This is derived from a nuclear potential given by Skyrme (1959), which is based on the
many-body theory of nuclear matter. A three-body effective potential is constructed from
which the potential energy density is derived. The predictions of the potential agree well
with the data from scattering experiments.

¢) Zel’dovich (1959) discussed the hypothesis that the nuclear repulsion (‘“hard core”)
is due to a common fermion “inside’ all baryons. This led to the conclusion that for dif-
ferent or identical baryons in S states there should appear a strong repulsion at small
distances with a potential ~ 7#2/(2uR?) (u the mass, R the separation).

We write for the two-body potential

2
V(r)=£;n(b—r)%, a2

where 7 is the step function and 4 is a number like the range. Assuming #!/? > !, we get
for the potential energy of one particle
2
E, 1=27r—é—bn. 13
mp

We have not included the restriction to S states. In an attempt to do so, we say the aver-
age wavenumber, k,y, satisfies

Roob=a<1, 14)
We know that the Fermi wavenumber satisfies
kav _ g<1. (1s)
ke
Then
b =§ ket 16
or
b= (3x2)-1/3 g w18 < g1 an

which contradicts our previous assumption. We know, however, that this calculation will
give the correct dependence of ¢, on #» and may hope that the coefficient will not be too
far off. Combining equations (17) and (13), we get
a #*
E, 1= (87/3)' - ——n? (18)
. Bmp
for the energy of one particle.
Recalling ¢, = #E,, 1, we obtain, in our units, just

16 a . ¢
€= On E sinh?® 7 (19)
To get P,, use
P, = sinh® u 9 [ & ] (20)
! 4 9[sinh3(¢/4)] Lsinh3(2¢/4)
to get
. 4
"= z‘?izﬁ sinh? 7. o

d) Zel’dovich (1961) also considered the question of the most rigid equation of state
compatible with the theory of relativity. He showed that baryons interacting via a vector
field mediated by massive quanta resulted in (assuming #»/% < 1/u)

E, 1=2ngn%/u?, (22)
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where m = #u is the mass of the meson and g is the baryonic charge of the baryons. (We
take ¢ = 1.) Again using ¢, = #nE, 1 and equation (20), and defining

g%/ h
= 23)
YT (m/mp)?
we get (in our units) just

6 . !
& =P,= —9—; 0% sinh® Z . (24)

Zel’dovich also assumed, and it is material to his argument, that

mp 3
<~y<{—=).
1<y (m) (25)

0 1 1 1 1
1 15 2 3 4 5 6 8 1012 I5

ty —

F16. 1.—Curve 1, first equation of state (eq. [10]); curve 2, second equation of state (eq. [11]); curve 3,
third equation of state (egs. [19]-{21]) (a/B8 = 1); curve 4, fourth equation of state (eq. [24]) (v = 3).

He has taken, too, e = mpn, but he states clearly that this is an approximation; for
exactness we must use, and do use, equation (8).
Note that for this equation of state the speed of sound is equal to that of light.

IV. RELATIVISTIC RESTRICTIONS ON THE EQUATION OF STATE

The equation of state must not lead to a prediction which contradicts the theory of
relativity. In particular, for very large n, P « »*, with s > 2, is not permitted; otherwise
Dsound > C. Within this framework it is arguable that the equations given in (¢) and (2)
above are quite simple and have some justification from elementary particle theory.
Their simplicity, and the radical differences in the dependence of P on # between them,
make the unusually similar results for (@), (¢), and (@) (see Zel’dovich 1961) interesting.

V. RESULTS

@) Equations (4) were integrated numerically for 15-20 values of ¢, for each equation
of state, on an IBM 7094 computer. The initial conditions (eq. [5]) define the starting
values, except in the case of infinite central density (see below); the integration is stopped
when ¢ = 10~ #,. The values of % and r at this point are M and R.
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Note that we take /8 = 1 and v = 3, respectively, and that no values of # which
would make P(¢;) > €(t) are used in the second equation of state.
The results are given in Figure 1 and in Table 1. The last value is also that for infinite

density, except for the second equation of state, in which it is the last solution for which
P(to) < e(to).

TABLE 1
A. FIRST EQUATION OF STATE, EQUATION (10)

to M My R

10 0 3015 0 3043 20 76
15 4793 488 16 14
20 6121 6288 13 13
23 6643 6855 11 74
26 6964 7209 10 57
28 7077 7336 9 877
30 7120 7384 9 270
33 7073 7330 8 455
36 6920 7153 7 754
40 6602 6780 6 970
50 5561 5546 5 627
60 4574 4381 5 000
70 3902 3603 5 035
75 3731 3410 5 298
80 3688 3362 5 679
85 3764 3445 6 085
90 3921 3619 6 401
100 4259 3993 6 597
110 4416 4168 6 431
120 4399 4150 6 221
130 4315 4055 6 104
14 0 4246 3977 6 093
150 4222 3950 6 140
200 4267 4001 6 182
30.0. 4262 0 3995 6 186
Infinite 0 4262 . 6 185

B. SECOND EQUATION OF STATE, EQUATION (11)

to M My R
05 0 04571 0 04575 27 14
10 0 04489 0 04493 22 09
13 0 03707 0 03709 22 41
15 0 03339 0 03342 8 518
16 0 06479 0 06513 6 904
18 0 2093 0 2140 7 147
20 0 4935 0 5220 8 010
22 0 8931 0 9797 8 633
2 4 1 286 1473 8 821
235 1 442 1 685 8 765
26 1 560 1 854 8 624
27 1 640 1974 8 428
28 1 685 2 044 8 194
29 1701 2 070 7 940
30 1 694 2 058 7 681
32 1 636 1 9358 7 184
33 1 594 1 886 6 960
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TABLE 1—Continued

C. THIRD EQUATION OF STATE, EQUATIONS (19)-(21)

(a/B=1)
to M My R
10 0 6292 0 6385 26 53
15 0 9325 0 9582 20 17
20 1 100 1 142 16 03
22 1 131 1176 14 73
24 1 143 1 190 13 60
25 1 144 1191 13 08
26 1141 1 188 12 60
28 1126 1171 11 71
30 1103 1 143 10 93
40 0 9165 0 9170 8 237
50 0 7297 0 6905 7 064
60 0 6124 0 5520 7 194
65 0 5906 0 5270 7 717
70 0 5957 0 5327 8 393
75 0 6212 0 5614 8 970
80 0 6539 0 5980 9 272
90 0 6969 0 6465 9 186
95 0 7019 0 6522 9 009
100 0 6993 0 6492 8 844
10 0 6853 0 6332 8 660
12 0 0 6754 0 6219 8 665
150 0 6796 0 6267 8 781
20 0 0 6788 0 6258 8 762
40.0. 0 6788 0 6259 8 762
Infinite 0 6788 8 760

D. FOURTH EQUATION OF STATE, EQUATION (24)

(v =3)

to M My R

10 0 6232 0 6341 24 18
13 0 9459 0 9749 21 02
15 1 148 1 194 19 25
17 1 320 1 387 17 64
20 1 503 1 598 15 30
22 1 569 1 677 14 23
23 1 587 1 699 13 64
24 1 595 1709 13 08
25 1 595 1 709 12 35
27 1 573 1 681 11 58
30 1 501 1 586 10 35
32 1 436 1 501 9 659
35 1 331 1 359 8 824
37 1 259 1 264 8 390
40 1 159 1 130 7 914
45 1 024 0 9531 7 568
50 0 9440 0 8512 7 733
53 0 9252 0 8279 8 017
55 0 9242 0 8266 8 242
57 0 9307 0 8345 8 467
60 0 9502 0 8582 8 755
70 1 018 0 9405 9 037
80 1027 0 9521 8 845
90 1015 0 9368 8 747
100 1 010 0 9305 8 765
12 0 1 013 0 9342 8 794
30.0. .. . 1 013 0 9338 8 788
Infinite 1013 8 787
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b) It is possible, as Oppenheimer and Volkoff showed, to integrate the equations even
if the central density is infinite. We obtain in the several cases the solutions

1 = _3 _=16t
(1) y 14’ 236 26
Gy e s
(see above; Plty] > €lto] is not permitted).
.. 1 49
(1) _1;::1_2’ ;—2':3‘—71_%65‘/4, -
u 1 4

. -1 L= g8t 28)
(IV) ; vl oy On 0%

These are taken in all cases as being accurate out to values of 7 such that ¢ = 30, and the
integration is done numerically from that point.

VI. DISCUSSION

The general character of the M versus f, curves (Fig. 1) is the same for the first, third,
and fourth equations of state. We have a gradual rise to an absolute maximum around
ty = 2.5-3, a decline to a relative minimum between 5.5 and 8.0, a rise to a relative
maximum between 7.5 and 11, and a decline to the infinite-density-solution value, which
is attained (to three significant figures) between 10 and 20.

The behavior of R as a function of #, for each equation of state is quite similar to the
curves Ia and 2a of Figure 2 of the paper by Arbartsumyan and Saakyan (1961).

We see that, except for the second equation of state (which for large ¢ is unphysical),
the M versus ¢ curves are quite similar. The features present in the solution curve for
the simplest possible case (Oppenheimer and Volkoff) are present in the others also. In
particular, there is an absolute maximum and a second relative maximum. One might
think that this would indicate the presence of a second stability region from the first
minimum to the second maximum: It seems reasonable that, wherever the slope of the
M versus £, curve is positive, the configuration should be stable. Of course, questions of
stability can be decided only by detailed calculation. However, Misner and Zapolsky
(1964), following an earlier work by Chandrasekhar (1964), have shown that the equilib-
rium, for polytropes, is unstable in this range of values of the density.

Of course, the existence of an absolute maximum for a given equation of state has the
consequences pointed out by Oppenheimer and Volkoff (1939). No stable configuration is
possible for M > Mmax. A star having a greater mass must lose part of it by some mecha-
nism or collapse toward the Schwarzschild singularity.

VII, COMPARISON WITH PREVIOUS WORK
a) First Equation of State

The curve of M versus /o does not agree with any published works (e.g., Oppenheimer
and Volkoff 1939; Saakyan 1963), but Saakyan’s (1962) comments seem to indicate that
he is aware that two relative maxima must exist in this case also. Slight differences were
found between the masses and radii of Oppenheimer and Volkoff’s (1939) and ours. Our
value for the mass for £) = « does not agree with Oppenheimer and Volkoff’s (1939) but
seems to be very close to the value given in Saakyan (1963). In any event a change of
stabilities occurs long before the ultra-density regime, at the first mass peak.
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b) Second Equation of Stale

We confirm the results of Saakyan (1963) but numerical comparison could not be
made, since Saakyan gave no table. Certain discrepancies exist between Cameron’s
(1959) results and ours, including one (for p, = 3 X 10'*c.g.s.) in a region where Saakyan
says his and Cameron’s results were identical. Note that Saakyan does not include one of
Cameron’s points in his graph, viz., p. = 2 X 10 c.g.s. ({, = 1.258).

Table 1 gives R, M, and My for each model and for each value of #.

VIII. BINDING ENERGIES
We have also calculated the quantity

R —-1/2
uN(R)=ch2fo 47”2(1_2_4;) ndr, (29)

where # is given by equation (6) for all the models except the infinite-density ones. The
column My in Table 1 gives the values of ux(R) in solar-mass units.

My is simply the total rest mass of the baryons composing the star. If My — M is
positive, we have binding, and conversely. The table shows that, roughly speaking, for
ty somewhat past the first maximum, the configurations are unbound.

I am grateful for the constant help and encouragement of Professor H.-Y. Chiu, who
suggested this research. It is a pleasure to mention several stimulating conversations
with Professor M. A. Ruderman. Finally, the staff at the Computing Center of the
Goddard Institute for Space Studies has been very helpful.
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